Now, cool semiconductors using laser light
Quotes

Now, cool semiconductors using laser light

Last Updated: Monday, January 23, 2012, 16:37
 
 Comment 0
 
Now, cool semiconductors using laser light
Img/2012/1/23/semi 256.jpgLondon: Scientists have now devised a new method to cool semiconductor membranes using laser light, which could pave the way for cooling components in quantum computers and ultrasensitive sensors.



Semiconductors are important components in solar cells, LEDs and many other electronics.



“In experiments, we have succeeded in achieving a new and efficient cooling of a solid material by using lasers. We have produced a semiconductor membrane with a thickness of 160 nanometers and an unprecedented surface area of 1 by 1 millimeter,” said Koji Usami, associate professor at Quantop at the Niels Bohr Institute.



“In the experiments, we let the membrane interact with the laser light in such a way that its mechanical movements affected the light that hit it.“We carefully examined the physics and discovered that a certain oscillation mode of the membrane cooled from room temperature down to minus 269 degrees C, which was a result of the complex and fascinating interplay between the movement of the membrane, the properties of the semiconductor and the optical resonances.”



Usami explained that the new optomechanical mechanism, which is the interaction between optical radiation, i.e. light, and a mechanical motion, that is central to the new discovery.



The paradox is that even though the membrane as a whole is getting a little bit warmer, the membrane is cooled at a certain oscillation and the cooling can be controlled with laser light.“The potential of optomechanics could, for example, pave the way for cooling components in quantum computers,” said Professor Eugene Polzik, head of the Center of Excellence Quantop at the Niels Bohr Institute at the University of Copenhagen.



“Efficient cooling of mechanical fluctuations of semiconducting nanomembranes by means of light could also lead to the development of new sensors for electric current and mechanical forces. Such cooling in some cases could replace expensive cryogenic cooling, which is used today and could result in extremely sensitive sensors that are only limited by quantum fluctuations,” Professor Polzik added.



The study has been published in the scientific journal, Nature Physics.



ANI


First Published: Monday, January 23, 2012, 16:37


Comments


comments powered by Disqus
BRICS Annual Summit 2014
BRICS Annual Summit 2014
Tata Zest Standout Features: In Pics
Tata Zest Standout Features: In Pics
New car launches in July
New car launches in July
Tata Zest first drive review: In pics
Tata Zest first drive review: In pics
Google I/O 2014
Google I/O 2014

Web Wrap
Contact Us : Privacy Policy : Legal Disclaimer
Copyright © Zee Media Corporation Ltd. All rights reserved