New study sheds light on DNA mechanisms



New study sheds light on DNA mechanisms
Washington: A Georgia State University researcher has shed light on the mechanisms related to DNA replication and transcription – something that may help develop new therapies for various diseases.If scientists know the shape and structure of DNA and RNA, scientists can design drugs to bind to the molecules in question — inhibiting the expression and progression of a disease, thus killing it off — whether it`s cancer, HIV or any other viruses.



Chemistry and chemical biology Professor Zhen Huang and colleagues could, for the first time, manipulate groups of molecules called methyl and phosphate groups in DNA that has been altered to contain selenium in order to bring them close enough together to form hydrogen bonds.



Such interactions can reduce the energy needed for a process called DNA duplex separation, thereby playing a role in the unwinding of DNA, which must happen in order for the genetic code to be copied and transcribed during cell replication and transcription.



Huang said that the research also explains how energy is used in the process.



"Assume that you want to do something, like to move an object from downstairs to upstairs, or building a pyramid where heavy blocks have to be transported," Huang said.



"You need lots of energy for these processes.



"If you need lots of energy, it will be a slow process or become inhibited because it consumes too much energy," Huang added.



With DNA in humans, the genome is comprised of about 3 billion base pairs, which are part of DNA`s "ladder" in the double helix that forms the code that causes certain genetic traits.



If it takes a lot of energy to unwind DNA in order to duplicate, the process is slowed.



On the other hand, if cellular dividing is too fast, DNA isn`t copied properly with full length, which causes unhealthy cells to be formed.



The researchers hope that the new discovery would help in understanding how RNA, which is involved in protein synthesis, is transcribed and works.

ANI