Earth did not always have oxygen since inception

An international team of researchers has found that the appearance of oxygen in the Earth’s atmosphere probably did not occur as a single event, but as a long series of starts and stops.

Washington: An international team of researchers has found that the appearance of oxygen in the Earth’s atmosphere probably did not occur as a single event, but as a long series of starts and stops.

The Fennoscandia Arctic Russia Drilling Early Earth Project (FAR DEEP) took place during the summer of 2007 near Murmansk in the northwest region of Russia.

The project, part of the International Continental Scientific Drilling Program, drilled a series of shallow, two-inch diameter cores and, by overlapping them, created a record representing stone deposited during the Proterozoic Eon (2,500 million to 542 million years ago).

“We’ve always thought that oxygen came into the atmosphere really quickly during an event,” Science Daily quoted Professor and head of geosciences of Penn State Lee R. Kump as saying.

“We are no longer looking for an event. Now we are looking for when and why oxygen became a stable part of the Earth’s atmosphere.

The researchers said that that evaluation of these cores and comparison with cores from Gabon previously analyzed by others, supports the conclusion that the Great Oxidation Event played out over hundreds of millions of years.

Oxygen levels gradually crossed the low atmospheric oxygen threshold for pyrite -- an iron sulfur mineral -- oxidation by 2,500 million years ago and the loss of any mass-independently fractionated sulfur by 2,400 million years ago.

Then oxygen levels rose at an ever-increasing rate through the Paleoproterozoic, achieving about 1 percent of the present atmospheric level.

“The definition of when an oxygen atmosphere occurred depends on which threshold you are looking for,” Kump said.

“It could be when pyrite becomes oxidized, when sulfur MIF disappears or when deep crustal oxidation occurs.”

When the mass-independent fractionated sulfur disappeared, the air on Earth was still not breathable by animal standards.

When red rocks containing iron oxides appeared 2,300 million years ago, the air was still unbreathable.

“At about 1 percent oxygen, the groundwater became strongly oxidized, making it possible for groundwater seeping through rocks to oxidize organic materials,” Kump added.

Initially, any oxygen in the atmosphere, produced by the photosynthesis of single-celled organisms, was used up when sulfur, iron and other elements oxidized.

When sufficient oxygen accumulated in the atmosphere, it permeated the groundwater and began oxidizing buried organic material, oxidizing carbon to create carbon dioxide.

The cores from the FAR-DEEP project were compared with the Francevillian samples from Gabon using the ratio of carbon isotopes 13 and 12 to see if the evidence for high rates of oxygen accumulation existed worldwide.

Both the FAR-DEEP project’s cores and the Francevillian cores show large deposits of carbon in the form of fossilized petroleum.

Both sets of cores also show similar changes in carbon 13 through time, indicating that the changes in carbon isotopes occurred worldwide and oxygen levels throughout the atmosphere were high.

The researchers report was published on Dec 1 issue of Science Express.

ANI

Zee News App: Read latest news of India and world, bollywood news, business updates, cricket scores, etc. Download the Zee news app now to keep up with daily breaking news and live news event coverage.