close
This ad will auto close in 10 seconds

Earth may really be a sort of giant living organism

Researchers have discovered new evidence that may back the famous Gaia hypothesis of Earth as a living organism.



Washington: Researchers have discovered new evidence that may back the famous Gaia hypothesis of Earth as a living organism.

The new finding could allow scientists to unlock heretofore hidden interactions between ocean organisms, atmosphere, and land - interactions that might provide proof supporting this theory.

The Gaia hypothesis - first articulated by James Lovelock and Lynn Margulis in the 1970s - holds that Earth’s physical and biological processes are inextricably connected to form a self-regulating, essentially sentient, system.

One of the early predictions of this hypothesis was that there should be a sulphur compound made by organisms in the oceans that was stable enough against oxidation in water to allow its transfer to the air.

Either the sulphur compound itself, or its atmospheric oxidation product, would have to return sulphur from the sea to the land surfaces. The most likely candidate for this role was deemed to be dimethylsulfide.

Newly published work done at the University of Maryland by first author Harry Oduro, together with UMD geochemist James Farquhar and marine biologist Kathryn Van Alstyne of Western Washington University, provides a tool for tracing and measuring the movement of sulphur through ocean organisms, the atmosphere and the land in ways that may help prove or disprove the controversial Gaia theory.

According to Oduro and his colleagues, this work presents the first direct measurements of the isotopic composition of dimethylsulfide and of its precursor dimethylsulfoniopropionate.

These measurements reveal differences in the isotope ratios of these two sulphur compounds that are produced by macroalga and phytoplankton.

These measurements (1) are linked to the compounds’ metabolism by these ocean organisms and (2) carry implications for tracking dimethylsulfide emissions from the ocean to the atmosphere.

Sulphur, the tenth most abundant element in the universe, is part of many inorganic and organic compounds. Sulphur cycles sulphur through the land, atmosphere and living things and plays critical roles in both climate and in the health of organisms and ecosystems.

“Dimethylsulfide emissions play a role in climate regulation through transformation to aerosols that are thought to influence the earth’s radiation balance,” said Oduro, who conducted the research while completing a Ph.D. in geology ‘n’ earth system sciences at Maryland and now is a postdoctoral fellow at the Massachusetts Institute of Technology.

“We show that differences in isotopic composition of dimethylsulfide may vary in ways that will help us to refine estimates of its emission into the atmosphere and of its cycling in the oceans.”

As with many other chemical elements, sulphur consists of different isotopes.

All isotopes of an element are characterized by having the same number of electrons and protons but different numbers of neutrons. Therefore, isotopes of an element are characterized by identical chemical properties, but different mass and nuclear properties.

As a result, it can be possible for scientists to use unique combinations of an element’s radioactive isotopes as isotopic signatures through which compounds with that element can be traced.

“What Harry did in this research was to devise a way to isolate and measure the sulphur isotopic composition of these two sulphur compounds,” said Farquhar, a professor in the University of Maryland’s department of geology.

“This was a very difficult measurement to do right, and his measurements revealed an unexpected variability in an isotopic signal that appears to be related to the way the sulphur is metabolized.

“Harry’s work establishes that we should expect to see variability in the sulphur isotope signatures of these compounds in the oceans under different environmental conditions and for different organisms. I think this will ultimately be very important for using isotopes to trace the cycling of these compounds in the surface oceans as well as the flux of dimethylsulfide to the atmosphere.”

Farquhar also insisted the “ability to do this could help us answer important climate questions, and ultimately better predict climate changes.”

“And it may even help us to better trace connections between dimethylsulfide emissions and sulfate aerosols, ultimately testing a coupling in the Gaia hypothesis,” Farquhar added.

The study appears in Online Early Edition of the Proceedings of the National Academy of Sciences (PNAS).

ANI

From Zee News

0 Comment - Join the Discussions