Advertisement

How first chain reaction transformed world after WW-II

Enrico Fermi and his colleagues at the University of Chicago engineered the first controlled, self-sustaining nuclear chain reaction 70 years ago.

Washington: Enrico Fermi and his colleagues at the University of Chicago engineered the first controlled, self-sustaining nuclear chain reaction 70 years ago.
Their experiment was a key step in the Manhattan Project to develop the atomic bomb during World War II. That initial chain reaction was too weak to power even a single light bulb, but it transformed the world, and the University of Chicago along with it, in a range of endeavors spanning physics, chemistry, interdisciplinary research, policy analysis, and nuclear medicine. Even in 1942, those present at the historic event sensed how influential their work would be. “All of us . . . knew that with the advent of the chain reaction, the world would never be the same again,” former UChicago physicist Samuel K. Allison wrote at the time. After the war, UChicago founded the Institute for Nuclear Studies and the Institute for the Study of Metals. Later renamed the Enrico Fermi and the James Franck institutes, they enabled the University to retain much of the intellectual talent that had assembled on campus to work on the Manhattan Project. Another outgrowth of the project was Argonne National Laboratory, which conducts basic and applied research in many major scientific disciplines. Today, Argonne is a partner in the Institute for Molecular Engineering, which is bringing leading scientists and engineers to a groundbreaking initiative to conduct research at the molecular level. “What we see here is a legacy of connection that we’re still building upon, a way to try to redefine engineering for the 21st century,” said Provost Thomas Rosenbaum, the John T. Wilson Distinguished Service Professor in Physics. The scientific staff of the Metallurgical Laboratory founded the Atomic Scientists of Chicago on Sept. 26, 1945—just weeks after the United States dropped the atomic bomb on Hiroshima and Nagasaki. The group published the first issue of the Bulletin of the Atomic Scientists of Chicago on Dec. 10, 1945. The Bulletin’s Doomsday Clock still stands as a symbol of humanity’s vulnerability to man-made catastrophe, with an agenda that expanded from nuclear weapons to include climate change and biological weapons. Medical research gained unexpected benefits from the wartime research. In the early 1950s, the Atomic Energy Commission funded the Argonne Cancer Research Hospital, which became the Franklin McLean Institute, 5841 S. Ellis Ave., in 1973. The Argonne Hospital successfully pioneered the use of radiation in cancer treatment, with efforts later expanding to include radiological innovations in the diagnosis and treatment of other diseases. Although the University of Chicago already was renowned in physics and chemistry before World War II, scientists who worked on the Manhattan Project helped those departments attain new research prominence following the war. Numerous UChicago scientists who were part of the war effort won Nobel Prizes for scholarly work in the postwar period, including Owen Chamberlain, Eugene P. Wigner, and Glenn Seaborg. Fermi, one of the most important scientists of the 20th century, became an inspiring teacher at UChicago after the war before dying of stomach cancer in 1954. The National Accelerator Laboratory in Batavia was renamed in Fermi’s honor in 1974, and became known as Fermilab, the site of numerous fundamental advances in particle physics. ANI