Transforming scar tissue into beating heart muscle may help repair cardiac damage

Last Updated: Friday, April 27, 2012 - 16:48

Washington: Researchers including one of Indian origin have declared a research breakthrough in mice that shows promise to restore hearts damaged by heart attacks -- by converting scar-forming cardiac cells into beating heart muscle.

Gladstone Institutes scientists previously transformed such cells into cardiac muscle-like cells in petri dishes.

But Gladstone postdoctoral scholar Li Qian, PhD, along with researchers in the laboratory of Deepak Srivastava, MD, has now accomplished this transformation in living animals—and with even greater success.

The results may have broad human-health implications.

“The damage from a heart attack is typically permanent because heart-muscle cells—deprived of oxygen during the attack—die and scar tissue forms,” said Dr. Srivastava, who directs cardiovascular and stem cell research at Gladstone, an independent and nonprofit biomedical-research institution.

“But our experiments in mice are a proof of concept that we can reprogram non-beating cells directly into fully functional, beating heart cells—offering an innovative and less invasive way to restore heart function after a heart attack.”

In laboratory experiments with mice that had experienced a heart attack, Drs. Qian and Srivastava delivered three genes that normally guide embryonic heart development—together known as GMT—directly into the damaged region.

Within a month, non-beating cells that normally form scar tissue transformed into beating heart-muscle cells. Within three months, the hearts were beating even stronger and pumping more blood.

“These findings could have a significant impact on heart-failure patients—whose damaged hearts make it difficult for them to engage in normal activities like walking up a flight of stairs,” said Dr. Qian, who is also a California Institute for Regenerative Medicine postdoctoral scholar and a Roddenberry Fellow.

“This research may result in a much-needed alternative to heart transplants—for which donors are extremely limited. And because we are reprogramming cells directly in the heart, we eliminate the need to surgically implant cells that were created in a petri dish.”

“Our next goal is to replicate these experiments and test their safety in larger mammals, such as pigs, before considering clinical trials in humans,” said Dr. Srivastava, who is also a professor at the University of California, San Francisco (UCSF), with which Gladstone is affiliated.

“We hope that our research will lay the foundation for initiating cardiac repair soon after a heart attack—perhaps even when the patient arrives in the emergency room,” Dr. Srivastava added.

ANI



First Published: Friday, April 20, 2012 - 15:54

comments powered by Disqus