‘Achilles’ heel of blood clot-buster discovered
Last Updated: Friday, March 09, 2012, 15:45
  

Washington: Doctors use drugs that activate plasmin, a powerful blood enzyme that disposes of blot clots, to treat patients who suffer heart attack or stroke.



But until now, the molecular details for these therapeutic effects have never been understood.

Now, a study provides remarkable new insight into how plasmin is produced. This work may lead to more effective clot-busting drugs.

Plasmin is released into the blood in an inactive form called plasminogen. Circulating plasminogen is curled up in a “closed,” activation-resistant form.

In order for plasminogen to be converted to plasmin, it must first undergo a dramatic change in shape and “open” itself up.

“We know that activation of plasminogen is tightly regulated,” explained senior study author, Prof. James Whisstock, from Monash University in Melbourne, Australia.

“However, without knowing the atomic details of the closed form of plasminogen, it is impossible to understand what causes it to change shape and how it is converted to plasmin by plasminogen activators,” Whisstock said.

Researchers from Monash University and the Australian Synchrotron have now solved the long-sought-after atomic structure of closed plasminogen.

“We were very surprised to find that a simple sugar tethered to plasminogen guards access to the site of activation,” said Dr. Tom Caradoc-Davies, from the Australian Synchrotron.

Most remarkably, however, the researchers also found that plasminogen plays a kind of peek-a-boo with the blood clot.

“We found one part of plasminogen seems to be very unstable and transiently opens up a tiny bit. Proteins in the blood clot bind to this ‘Achilles’ heel’ when it is exposed, trapping plasminogen in the open form that can be activated,” explained lead author, Dr. Ruby Law, from Monash University.

“We use plasminogen-activating drugs to treat stroke and other life-threatening disorders associated with blood clots. However, until now, the molecular details for these therapeutic effects have never been understood,” added co-senior author, Paul Coughlin, a clinical hematologist from the Australian Centre for Blood diseases.

“Now, with the structure of plasminogen and an enhanced understanding of how it is converted to plasmin, we finally have a platform to develop new and more effective clot-busting therapeutics,” said Coughlin.

The discovery was recently published by Cell Press in the journal Cell Reports.

ANI


First Published: Friday, March 09, 2012, 15:45



comments powered by Disqus