Corals could hold key to future bone grafting procedures

Washington: A new research suggests that sea corals could soon be used more extensively in bone grafting procedures.

By partially converting calcium carbonate found in the exoskeleton of sea coral into coralline hydroxyapatite (CHA), the refined material, called coralline hydroxyapatite/calcium carbonate (CHACC), has been shown to 'considerably improve' the outcome of bone grafts in 16 patients.

The results of the small clinical study showed that bone healing was observed in each of the patients after four months and that the CHACC had fully biodegraded after two years.

CHA derived from sea coral has been used for many years as a successful bone graft material; however, its use has been limited to specific bones because it does not fully biodegrade.

"Our methods have considerably improved the outcome of bone grafts by using the partial conversion technique, in which the biodegradable composition from natural coral is reserved. It works in a very similar way to commercially available CHA for conductive bone regeneration, but the better biodegradation properties are compatible with the host tissue's natural bone turnover process," corresponding author of the research Zhidao Xia from Swansea University said.

"When biomaterials do not biodegrade and remain in skeletal tissue, they may continuously cause problems in the host. In extreme conditions, it is possible that the different mechanical properties of the artificial bone graft may cause a re-fracture or become a source for bacterium growth in infection," Xia said.

CHACC could become a promising alternative to an autograft, which uses pieces of bone from another part of the patient's body to regrow new bone in the injured area.

Besides only having a limited stock, an autograft can cause discomfort, pain and long-term impairment in the area that the bone is taken from.

In their study, the researchers, from the UK and China, harvested sea coral from South China and partially converted the calcium carbonate into CHA to form CHACC.

According to the paper, the CHACC composition, which contains 15 per cent of CHA in a thin layer around the calcium carbonate, has the strong, porous structure that has made CHA commercially successful, but contains significantly improved biodegrading properties to support natural bone healing.

In their study, the researchers constructed CHACC and tested its physical and chemical properties using a number of microscopic and spectroscopic techniques. The CHACC was then mixed with human mesenchymal stem cells and implanted subcutaneously in mice for 10 weeks.

The results showed that new bone formation was visible on the surface of the CHACC.

The research has been published in IOP Publishing's journal Biomedical Materials.

Zee News App: Read latest news of India and world, bollywood news, business updates, cricket scores, etc. Download the Zee news app now to keep up with daily breaking news and live news event coverage.