New drugs may be able to stop malarial parasite from infecting cells
Last Updated: Friday, December 28, 2012, 17:18
  

Washington: Researchers are developing a new class of malaria drugs that may prevent Plasmodium falciparum parasite, which is responsible for malaria, to exit their hosts and infect other cells.

Calpain, a calcium-regulated enzyme, is essential to a host of cellular processes, but can cause severe problems in its overactivated state. It has been implicated as a factor in muscular dystrophy, AIDS, Alzheimer’s disease, multiple sclerosis, and cancer. As such, finding and exploiting calpain inhibitors is an important area of research.

Now, a team from the Perelman School of Medicine, University of Pennsylvania, in collaboration with the University of California at San Francisco and the Department of Biochemistry and Protein Function Discovery at Queen’s University, has developed a unique approach to calpain inhibition by mimicking a natural reaction with a synthesized molecule.

One of calpain’s less beneficial functions is that it eases the ability for cellular invaders such as the Plasmodium falciparum parasite, which is responsible for malaria, to exit their hosts and infect other cells. It is this property that caught the attention of Doron Greenbaum, PhD, assistant professor in of Pharmacology, whose laboratory studies how malaria spreads.

Greenbaum and his collaborators examined the crystal structure of calpastatin, a natural calpain inhibitor, for clues.

Studying the configuration of how calpastatin bound to the active site of the calpain complex, “we found that there was a small alpha-helix that fit into the active site of the calpain enzyme,” Greenbaum said.

Researchers have never before used an alpha-helix structure to inhibit a protease. The research team created a peptide with an alpha-helical shape that would fit into the active site of the calpain protease.

The team set out to find a way to stabilize the helix by modifying it with a cross-linking peptide. They screened twenty-four commercially available crosslinkers, identifying five that succeeded in stabilizing the helix. They selected one in particular -- dibromo-m-xylene c15 -- and used it to mimic a protein-protein interaction between calpain and calpastatin. By binding to the active site and thus blocking it, the synthesized molecule inhibits the calpain enzyme from binding with other molecules that permit it to wreak its damaging effects.

“It’s the first example of an alpha-helical inhibitor of any protease. Previously no one’s ever tried using an alpha-helical motif. It opens up a new way of inhibiting proteases,” Greenbaum said.

Aside from being a good inhibitor, the stabilized alpha-helical molecule is also highly specific for calpains, while ignoring other, similar-shaped proteases, thus hopefully downplaying potential side effects if used in humans.

Greenbaum and his collaborators are building upon this initial success to expand the basic concept to a wide range of protease molecules.

The extension of the technique to stabilize the alpha-helix shape in enzymes to other proteins could eventually lead to practical drug therapies for a wide range of diseases, predict the researchers.

The work was published in the latest issue of the Journal of the American Chemical Society.

ANI


First Published: Friday, December 28, 2012, 17:18



comments powered by Disqus