New material may lead to super-thin imaging devices

Researchers have developed an atomically thin material that may lead to the thinnest-ever imaging devices.

Washington: Researchers have developed an atomically thin material that may lead to the thinnest-ever imaging devices.

Synthetic two-dimensional materials based on metal chalcogenide compounds could be the basis for superthin devices, according to Rice University researchers.

One such material, molybdenum disulfide, is being widely studied for its light-detecting properties, but copper indium selenide (CIS) also shows extraordinary promise, researchers said.

Sidong Lei, a graduate student in the Rice lab of materials scientist Pulickel Ajayan, synthesised CIS, a single-layer matrix of copper, indium and selenium atoms.

Lei also built a prototype - a three-pixel, charge-coupled device (CCD) - to prove the material's ability to capture an image.

Lei said the optoelectronic memory material could be an important component in two-dimensional electronics that capture images.

"Traditional CCDs are thick and rigid, and it would not make sense to combine them with 2-D elements. CIS-based CCDs would be ultrathin, transparent and flexible, and are the missing piece for things like 2-D imaging devices," Lei said.

The device traps electrons formed when light hits the material and holds them until released for storage, Lei said.

CIS pixels are highly sensitive to light because the trapped electrons dissipate so slowly, said Robert Vajtai, a senior faculty fellow in Rice's Department of Materials Science and NanoEngineering.

"There are many two-dimensional materials that can sense light, but none are as efficient as this material. This material is 10 times more efficient than the best we've seen before," Vajtai said.

Because the material is transparent, a CIS-based scanner might use light from one side to illuminate the image on the other for capture.

For medical applications, Lei envisions CIS being combined with other 2-D electronics in tiny bio-imaging devices that monitor real-time conditions.

In the experiments, Lei and colleagues grew synthetic CIS crystals, pulled single-layer sheets from the crystals and then tested the ability of the layers to capture light.

The details appear in the American Chemical Society journal Nano Letters. 

By continuing to use the site, you agree to the use of cookies. You can find out more by clicking this link