This ad will auto close in 10 seconds

Fluffy disk around baby star could shed light on planet formation

A team of researchers` observed a disk around the young star RY Tau and have claimed that above it is responsible for the scattered light observed in the infrared image.

Washington: A team of researchers` observed a disk around the young star RY Tau and have claimed that above it is responsible for the scattered light observed in the infrared image.

Detailed comparisons with computer simulations of scattered light from the disk reveal that this layer appears to be a remnant of material from an earlier phase of stellar and disk development, when dust and gas were falling onto the disk.

Since 2009, the five-year SEEDS Project has focused on direct imaging of exoplanets, i.e., planets orbiting stars outside of our solar system, and disks around a targeted total of 500 stars.

Planet formation, an exciting and active area for astronomical research, has long fascinated many scientists. Disks of dust and gas that rotate around young stars are of particular interest, because astronomers think that these are the sites where planets form - in these so-called `protoplanetary disks.`

Since young stars and disks are born in molecular clouds, giant clouds of dust and gas, the role of dust becomes an important feature of understanding planet formation; it relates not only to the formation of rocky, Earth-like planets and the cores of giant Jupiter-like planets but also to that of moons, planetary rings, comets, and asteroids.

As a part of the SEEDS Project, the current team of researchers used HiCIAO mounted on the Subaru Telescope to observe a possible planet-forming disk around the young star RY Tauri.

This star is about 460 light-years away from Earth in the constellation Taurus and is around half a million years old. The disk has a radius of about 70 AU (10 billion kilometers), which is a few times larger than the orbit of Neptune in our own solar system.

Astronomers have developed powerful instruments to obtain images of protoplanetary disks, and Subaru Telescope`s HiCIAO is one of them. HiCIAO uses a mask to block out the light of the central star, which may be a million times brighter than its disk. They can then observe light from the star that has been reflected from the surface of the disk.

The scattered light will reveal the structure of the surface of the disk, which is very small in scale and difficult to observe, even with large telescopes. Observers use HiCIAO with a 188 element adaptive optics system to reduce the blurring effects of the Earth`s atmosphere, making the images significantly sharper.

This team succeeded in capturing a near-infrared image (1.65 microns) associated with the RY Tauri disk. Unlike many other protoplanetary disks, the disk emission is offset from the center of the star. In contrast to longer wavelength observations, which are associated with the midplane of the disk, near-infrared, scattered light coming from the surface of the disk produced this offset, which provides information about the vertical structure of the disk.

Changes in structure perpendicular to the surface of a disk are much harder to investigate because there are few good examples to study. Therefore, the information about vertical structure that this image provides is a contribution to understanding the formation of planets, which depends strongly on the structure of the disk, including structures such as spirals and rings, as well as height.

The team performed extensive computer simulations of the scattered light, for disks with different masses, shapes, and types of dust. They found that the scattered light is probably not associated with the main surface of the disk, which is the usual explanation for the scattered light image. Instead, the observed infrared emission can be explained if the emission is associated with a fluffy upper layer, which is almost transparent and not completely transparent. The team estimated the dust mass in this layer to be about half the mass of Earth`s Moon.


From Zee News

0 Comment - Join the Discussions


photo gallery