Advertisement

Herschel`s new observation reveals how massive stars are born

Observation of a vast star-forming cloud, called W3, by ESA`s Herschel space observatory is helping astronomers to understand how massive stars are born.

Washington: Observation of a vast star-forming cloud, called W3, by ESA`s Herschel space observatory is helping astronomers to understand how massive stars are born.
W3 is a giant molecular cloud containing an enormous stellar nursery, some 6,200 light-years away in the Perseus Arm, one of our Milky Way Galaxy`s main spiral arms. Spanning almost 200 light-years, W3 is one of the largest star-formation complexes in the outer Milky Way, hosting the formation of both low- and high-mass stars. The distinction is drawn at eight times the mass of our own Sun: above this limit, stars end their lives as supernovas. By studying the two regions of massive star formation-W3 Main and W3 (OH) -- scientists have made progress in solving one of the major conundrums in the birth of massive stars. That is, even during their formation, the radiation blasting away from these stars is so powerful that they should push away the very material they are feeding from. If this is the case, how can massive stars form at all? Observations of W3 point toward a possible solution: in these very dense regions, there appears to be a continuous process by which the raw material is moved around, compressed and confined, under the influence of clusters of young, massive protostars. Through their strong radiation and powerful winds, populations of young high-mass stars may well be able to build and maintain localized clumps of material from which they can continue to feed during their earliest and most chaotic years, despite their incredible energy output. ANI