This ad will auto close in 10 seconds

Hubble reveals temperature variations of `hot Jupiters`

Last Updated: Sunday, July 7, 2013 - 11:32

Washington: The analysis of eight `hot Jupiter` exoplanets suggest that winds and clouds play an important role in the atmospheric make up of these exotic planets.

Hot Jupiters are giant exoplanets, similar in size to Jupiter that orbit so close to their stars that their atmospheres can reach temperatures of 1000-3000 degrees Celsius.

Astronomers can detect which gases are present in their atmospheres by analysing the spectrum of starlight filtered through the planet`s atmosphere when the planet passes in front of the star.

Last year, a team led by the University of Exeter was awarded nearly 200 hours on the NASA/ESA Hubble Space Telescope to examine eight planets using this technique - the largest survey of its type to date.

"These hot Jupiter planets are expected to have a vastly different composition from planets in our own Solar System like Jupiter, where temperatures at the cloud tops are around -150 degrees Celsius," Catherine Huitson of the University of Exeter, said.

"The first planet we measured is one of the hottest to be observed, with a temperature of over 2000 degrees.

"The early results of the survey are now in, and they present a diverse range of puzzling properties," she said.

The first, very hot planet observed showed an unexpected absence of titanium oxide.

Current 3D models of hot Jupiter atmospheres suggest that grains of this heavy molecule should be circulated by fast winds, allowing gaseous titanium oxide to reach the observable upper atmosphere.

The non-detection of the gas suggests that either the winds are not as strong as expected or the molecule is forming much larger grains that are too heavy be lifted.

"Titanium oxide is a solid on Earth, but we expect it to be present in the atmosphere of the hottest hot Jupiters because of the extreme temperatures," Huitson said.

"This molecule is important because it could trap atmospheric heat high up forming a stratosphere - the same role ozone plays on Earth.

"However, our results show that this molecule is not present in the upper atmosphere, meaning that we need to revise our understanding of how wind processes distribute materials," she said.

The team also made a confirmed detection of water vapour in the atmosphere of two planets. Importantly, the water was found in the quantities predicted by theory, contrasting with previously observed planets.


First Published: Sunday, July 7, 2013 - 11:27

More from zeenews

comments powered by Disqus