trendingNowenglish1911244https://zeenews.india.com/news/space/worlds-most-sensitive-detector-lux-finds-no-dark-matter_1911244.html
News> Space
Advertisement

World's most sensitive detector 'LUX' finds no dark matter

The Large Underground Xenon (LUX), world’s most sensitive particle detector, has failed to yield any evidence of dark matter. 

World's most sensitive detector 'LUX' finds no dark matter

Zee Media Bureau

Washington: The Large Underground Xenon (LUX), world’s most sensitive particle detector, has failed to yield any evidence of dark matter. Even after 20 months of operation, LUX didn't find any trace of the elusive substance thought to account for more than four-fifths of the mass of the universe.

The LUX dark matter experiment operates beneath a mile of rock at the Sanford Underground Research Facility in the Black Hills of South Dakota. It has completed its silent search for the missing matter of the universe.

Scientists said that LUX's sensitivity far exceeded the goals for the project, but yielded no trace of a dark matter particle.

Because of its extreme sensitivity, the team was confident that if dark matter particles had interacted with the LUX's xenon target, the detector would almost certainly have seen it.

That enables scientists to confidently eliminate many potential models for dark matter particles, offering critical guidance for the next generation of dark matter experiments.

Rick Gaitskell, professor at Brown University in the US, "LUX has delivered the world's best search sensitivity since its first run in 2013".

"With this final result from the 2014 to 2016 search, the scientists of the LUX Collaboration have pushed the sensitivity of the instrument to a final performance level that is four times better than the original project goals," Gaitskell added.

"It would have been marvellous if the improved sensitivity had also delivered a clear dark matter signal," he said.

Dark matter is thought to account for more than four-fifths of the mass in the universe.

Scientists are confident of its existence because the effects of its gravity can be seen in the rotation of galaxies and in the way light bends as it travels through the universe, but experiments have yet to make direct contact with a dark matter particle.

The LUX experiment was designed to look for weakly interacting massive particles (WIMPs), the leading theoretical candidate for a dark matter particle.

If the WIMP idea is correct, billions of these particles pass through your hand every second, and also through the Earth and everything on it.

However, because WIMPs interact so weakly with ordinary matter, this ghostly traverse goes entirely unnoticed.

The LUX detector consists of a third-of-a-tonne of cooled liquid xenon surrounded by powerful sensors designed to detect the tiny flash of light and electrical charge emitted if a WIMP collides with a xenon atom within the tank.

The detector's location at Sanford Lab beneath a mile of rock, and inside a 72,000-gallon, high-purity water tank, helps shield it from cosmic rays and other radiation that would interfere with a dark matter signal.

Researchers said that the 20-month run of LUX represents one of the largest exposures ever collected by a dark matter experiment.

(With PTI inputs)

Stay informed on all the latest news, real-time breaking news updates, and follow all the important headlines in india news and world News on Zee News.

Read More
NEWS ON ONE CLICK