Washington DC: A team of researchers has come up with a way to use "veritable wonder material" graphene oxide sheets to turn dirty water clean for a thirsty world. According to the engineers at Washington University in St. Louis, the novel hybrid nanomaterials could be a global game-changer.


COMMERCIAL BREAK
SCROLL TO CONTINUE READING

"We hope that for countries where there is ample sunlight, such as India, you`ll be able to take some dirty water, evaporate it using our material, and collect fresh water," said researcher Srikanth Singamaneni.


The new approach combines bacteria-produced cellulose and graphene oxide to form a bi-layered biofoam.


"The process is extremely simple," Singamaneni said.


"The beauty is that the nanoscale cellulose fiber network produced by bacteria has excellent ability move the water from the bulk to the evaporative surface while minimizing the heat coming down and the entire thing is produced in one shot."The design of the material is novel here," Singamaneni said.


"You have a bi-layered structure with light-absorbing graphene oxide filled nanocellulose at the top and pristine nanocellulose at the bottom. When you suspend this entire thing on water, the water is actually able to reach the top surface where evaporation happens.


He added, "Light radiates on top of it, and it converts into heat because of the graphene oxide, but the heat dissipation to the bulk water underneath is minimized by the pristine nanocellulose layer. You don`t want to waste the heat; you want to confine the heat to the top layer where the evaporation is actually happening."


The cellulose at the bottom of the bi-layered biofoam acts as a sponge, drawing water up to the graphene oxide where rapid evaporation occurs. The resulting fresh water can easily be collected from the top of the sheet.


The process in which the bi-layered biofoam is actually formed is also novel. In the same way an oyster makes a pearl, the bacteria forms layers of nanocellulose fibers in which the graphene oxide flakes get embedded.


"While we are culturing the bacteria for the cellulose, we added the graphene oxide flakes into the medium itself," said lead author Qisheng Jiang, adding: "The graphene oxide becomes embedded as the bacteria produces the cellulose. At a certain point along the process, we stop, remove the medium with the graphene oxide and reintroduce fresh medium. That produces the next layer of our foam. The interface is very strong; mechanically, it is quite robust."


The new biofoam is also extremely light and inexpensive to make, making it a viable tool for water purification and desalination.


The paper is available online in Advanced Materials.