New energy-efficient method could revolutionize production of biofuels

Last Updated: Tuesday, August 4, 2009 - 15:49

Washington: A team of scientists has developed a more energy-efficient method of chemical separations that could revolutionize processes in the petrochemical and biofuels industries.
The method has been developed by a team of researchers, led by chemical engineering and materials science professor Michael Tsapatsis in the University of Minnesota’s Institute of Technology.

The ability to separate and purify specific molecules in a chemical mixture is essential to chemical manufacturing.

Many industrial separations rely on distillation, a process that is easy to design and implement but consumes a lot of energy.

With a grant from the National Science Foundation (NSF), Tsapatsis and his team have developed a new method for creating high-performance membranes from crystal sieves, called zeolites.

The method could significantly increase the energy efficiency of chemical separations over conventional methods and enable higher production rates.

The researchers developed a rapid heating treatment to remove structural defects in zeolite membranes that limit their performance, a problem that has plagued the technology for decades.

Using membranes rather than energy-intensive processes such as distillation and crystallization could have a major impact on industry,” said NSF program officer Rosemarie Wesson.

“This discovery could increase the energy efficiency of producing important chemical solvents such as xylene and renewable biofuels, such as ethanol and butanol,” she said.

Tsapatsis explained that a universal challenge for biofuel production is the significant energy input required to separate and purify the desired products.

Distillation is a commonly used but energy-intensive separation method. Some experts project that the production of biofuels, such as ethanol, will reach 20 million barrels per day worldwide by 2030, according to Tsapatsis.

“Assuming that technologically mature processes such as distillation continue to be used, the equivalent of 3 percent of the world’s current total energy consumption would be needed for biofuel separations,” he said.

Membrane-based separation processes, like those developed by University of Minnesota researchers, can eliminate all but a small fraction of the energy usage associated with this type of biofuel production.

“We are very excited about our breakthrough research and the possibilities for the future,” Tsapatsis said. “Great things can happen if these zeolite membranes work in industry the way we’ve seen them work in the lab,” he added.

ANI



First Published: Tuesday, August 4, 2009 - 15:49

More from zeenews

 
comments powered by Disqus